Sec22 regulates endoplasmic reticulum morphology but not autophagy and is required for eye development in Drosophila.

نویسندگان

  • Xiaocui Zhao
  • Huan Yang
  • Wei Liu
  • Xiuying Duan
  • Weina Shang
  • Dajing Xia
  • Chao Tong
چکیده

The endoplasmic reticulum (ER) is a highly dynamic organelle that plays a critical role in many cellular processes. Abnormal ER morphology is associated with some human diseases, although little is known regarding how ER morphology is regulated. Using a forward genetic screen to identify genes that regulated ER morphology in Drosophila, we identified a mutant of Sec22, the orthologs of which in yeast, plants, and humans are required for ER to Golgi trafficking. However, the physiological function of Sec22 has not been previously investigated in animal development. A loss of Sec22 resulted in ER proliferation and expansion, enlargement of late endosomes, and abnormal Golgi morphology in mutant larvae fat body cells. However, starvation-induced autophagy was not affected by a loss of Sec22. Mosaic analysis of the eye revealed that Sec22 was required for photoreceptor morphogenesis. In Sec22 mutant photoreceptor cells, the ER was highly expanded and gradually lost normal morphology with aging. The rhabdomeres in mutants were small and sometimes fused with each other. The morphology of Sec22 mutant eyes resembled the eye morphology of flies with overexpressed eyc (eyes closed). eyc encodes for a Drosophila p47 protein that is required for membrane fusion. A loss of Syntaxin5 (Syx5), encoding for a t-SNARE on Golgi, also phenocopied the Sec22 mutant. Sec22 formed complexes with Syx5 and Eyc. Thus, we propose that appropriate trafficking between the ER and Golgi is required for maintaining ER morphology and for Drosophila eye morphogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sec22 regulates ER morphology but not autophagy in flies

The endoplasmic reticulum (ER) is a highly dynamic organelle that plays a critical role in many cellular processes. Abnormal ER morphology is associated with some human diseases, although little is known regarding how ER morphology is regulated. Using a forward genetic screen to identify genes that regulated ER morphology in Drosophila, we identified a mutant of Sec22, the orthologs of which in...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve

Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy a...

متن کامل

Characterization of Atg6 Function in Autophagy and Growth Control during Drosophila Melanogaster Development

Title of Document: CHARACTERIZATION OF ATG6 FUNCTION IN AUTOPHAGY AND GROWTH CONTROL DURING DROSOPHILA MELANOGASTER DEVELOPMENT Jahda Hope Hill, Doctor of Philosophy, 2010 Directed By: Dr. Louisa P. Wu, Associate Professor Department of Cell Biology and Molecular Genetics University of Maryland, College Park The tumor suppressor Beclin 1 mitigates cell stress by regulating the lysosomal degrada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 12  شماره 

صفحات  -

تاریخ انتشار 2015